tokio-1.0
Avril 4 years ago
parent 5a2c84cb68
commit f6be53890f
Signed by: flanchan
GPG Key ID: 284488987C31F630

@ -27,13 +27,15 @@ full = [
"sha256",
"password",
"aes",
"checksum"
"checksum",
"rsa"
]
sha256 = ["sha2"]
password = ["sha256", "pbkdf2", "hex-literal", "hmac", "getrandom"]
aes = ["openssl", "getrandom"]
checksum = ["crc"]
rsa = ["openssl", "password"]
[build-dependencies]
rustc_version = "0.2"

@ -46,3 +46,27 @@ pub fn refer_mut<T: ?Sized>(value: &mut T) -> &mut [u8]
slice::from_raw_parts_mut(value as *mut T as *mut u8, mem::size_of_val(value))
}
}
/// Get a type from its bytes
///
/// # Notes
/// This function omits bounds checks in production builds
pub fn derefer<T>(bytes: &[u8]) -> &T
{
#[cfg(debug_assertions)] assert!(bytes.len() >= mem::size_of::<T>(), "not enough bytes ");
unsafe {
&*(&bytes[0] as *const u8 as *const T)
}
}
/// Get a mutable reference to a type from its bytes
///
/// # Notes
/// This function omits bounds checks in production builds
pub fn derefer_mut<T>(bytes: &mut [u8]) -> &mut T
{
#[cfg(debug_assertions)] assert!(bytes.len() >= mem::size_of::<T>(), "not enough bytes ");
unsafe {
&mut *(&mut bytes[0] as *mut u8 as *mut T)
}
}

@ -1,4 +1,7 @@
//! Constants
//! Constants used throughout
//!
//! # Notes
//! Probably best to not change these unless you know what you're doing.
/// Default buffer size for most things
pub const BUFFER_SIZE: usize = 4096;
@ -20,3 +23,16 @@ pub const AES_KEYSIZE: usize = 16;
/// Aes IV size in bytes
pub const AES_IVSIZE: usize = 16;
/// The number of bits used for RSA key
pub const RSA_KEY_BITS: u32 = 4096;
/// Size of an RSA signature
pub const RSA_SIG_SIZE: usize = 512;
/// The number of bytes the RSA padding requires
pub const RSA_PADDING_NEEDS: usize = 11;
/// The padding used for RSA operations
#[cfg(feature="rsa")]
pub const RSA_PADDING: openssl::rsa::Padding = openssl::rsa::Padding::PKCS1;

@ -7,3 +7,5 @@ use std::{
pub mod password;
#[cfg(feature="aes")]
pub mod aes;
#[cfg(feature="rsa")]
pub mod rsa;

@ -0,0 +1,103 @@
//! RSA errors
use std::{
fmt,
io,
error,
num::TryFromIntError,
};
use openssl::{
error::ErrorStack,
};
/// Binary error reason
#[derive(Debug)]
pub enum BinaryErrorKind {
Unknown,
Length{expected: Option<usize>, got: Option<usize>},
Corruption,
}
/// Represents an error for RSA operations
#[derive(Debug)]
pub enum Error {
Encrypt,
Decrypt,
Integer,
Key,
Password,
PEM,
Binary(BinaryErrorKind),
Utf8,
OpenSSLInternal(ErrorStack),
IO(io::Error),
Unknown,
}
impl error::Error for Error
{
fn source(&self) -> Option<&(dyn error::Error + 'static)>
{
Some(match &self {
Self::IO(io) => io,
Self::OpenSSLInternal(ssl) => ssl,
_ => return None,
})
}
}
impl std::fmt::Display for Error
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result
{
match self {
Self::Encrypt => write!(f, "encryption failed"),
Self::Decrypt => write!(f, "decryption failed"),
Self::Integer => write!(f, "integer operation exceeded bounds (overflow/underflow)"),
Self::Key => write!(f, "invalid key"),
Self::Password => write!(f, "a password is needed but none was provided"),
Self::PEM => write!(f, "invalid PEM string"),
Self::Binary(BinaryErrorKind::Length{expected: Some(expected), got: Some(got)}) => write!(f, "invalid binary representation: bad length (expected {} got {})", expected, got),
Self::Binary(BinaryErrorKind::Length{expected: Some(expected), ..}) => write!(f, "invalid binary representation: bad length (expected {})", expected),
Self::Binary(BinaryErrorKind::Length{got: Some(got), ..}) => write!(f, "invalid binary representation: bad length (got {})", got),
Self::Binary(BinaryErrorKind::Length{..}) => write!(f, "invalid binary representation: bad length"),
Self::Binary(BinaryErrorKind::Corruption) => write!(f, "invalid binary representation: corrupted data"),
Self::Binary(_) => write!(f, "invalid binary representation"),
Self::Utf8 => write!(f, "text contained invalid utf8"),
Self::IO(io) => write!(f, "i/o error: {}", io),
Self::OpenSSLInternal(ssl) => write!(f, "openssl error: {}", ssl),
_ => write!(f, "unknown error"),
}
}
}
impl From<ErrorStack> for Error
{
#[inline] fn from(from: ErrorStack) -> Self
{
Self::OpenSSLInternal(from)
}
}
impl From<io::Error> for Error
{
fn from(from: io::Error) -> Self
{
Self::IO(from)
}
}
impl From<std::str::Utf8Error> for Error
{
fn from(_: std::str::Utf8Error) -> Self
{
Self::Utf8
}
}
impl From<TryFromIntError> for Error
{
fn from(_: TryFromIntError) -> Self
{
Self::Integer
}
}

@ -1,11 +1,13 @@
#![allow(dead_code)]
mod consts;
pub mod consts;
#[allow(unused_imports)]
use consts::*;
pub mod util;
pub mod bytes;
#[allow(unused_imports)]
mod error;
// Actual things
@ -18,3 +20,6 @@ pub mod password;
pub mod aes;
#[cfg(feature="checksum")]
pub mod crc;
#[cfg(feature="rsa")]
pub mod rsa;

@ -0,0 +1,67 @@
//! Traits for objects with RSA key components
use openssl::{
bn::BigNum,
};
pub trait HasComponents
{
fn raw(&self) -> &[u8];
}
pub trait HasPublicComponents: HasComponents
{
fn e(&self) -> &[u8];
fn n(&self) -> &[u8];
/// Get the modulus component as a new `BigNum`.
///
/// # Notes
/// This can panic if the internal state of the instance is incorrect
#[inline] fn num_n(&self) -> BigNum
{
BigNum::from_slice(self.n()).unwrap() //we assume things like this succeed because we assume the internal stat is consistant
}
/// Get the exponent component as a new `BigNum`
///
/// # Notes
/// This can panic if the internal state of the instance is incorrect
#[inline] fn num_e(&self) -> BigNum
{
BigNum::from_slice(self.n()).unwrap()
}
}
pub trait HasPrivateComponents: HasPublicComponents
{
fn d(&self) -> &[u8];
fn p(&self) -> &[u8];
fn q(&self) -> &[u8];
fn dmp1(&self) -> &[u8];
fn dmq1(&self) -> &[u8];
fn iqmp(&self) -> &[u8];
#[inline] fn num_d(&self) -> BigNum
{
BigNum::from_slice(self.d()).unwrap()
}
#[inline] fn num_p(&self) -> BigNum
{
BigNum::from_slice(self.p()).unwrap()
}
#[inline] fn num_q(&self) -> BigNum
{
BigNum::from_slice(self.q()).unwrap()
}
#[inline] fn num_dmp1(&self) -> BigNum
{
BigNum::from_slice(self.dmp1()).unwrap()
}
#[inline] fn num_dmq1(&self) -> BigNum
{
BigNum::from_slice(self.dmq1()).unwrap()
}
#[inline] fn num_iqmp(&self) -> BigNum
{
BigNum::from_slice(self.iqmp()).unwrap()
}
}

@ -0,0 +1,100 @@
//! Traits for the key containers
use std::{
borrow::Cow,
error,
convert::Infallible,
};
use openssl::{
pkey::{
HasPublic,
HasPrivate,
PKey,
},
rsa::{
Rsa,
},
};
/// A trait for containers that contain public keys
pub trait PublicKey
{
/// The type of the key
type KeyType: HasPublic;
/// Error that can happen from the conversion
type Error: error::Error;
/// Get or create a `PKey` that contains the public key
fn get_pkey_pub(&self) -> Result<Cow<'_, PKey<Self::KeyType>>, Self::Error>;
/// Get or create an `Rsa` from this public key if possible
fn get_rsa_pub(&self) -> Result<Option<Cow<'_, Rsa<Self::KeyType>>>, Self::Error>
{
Ok(self.get_pkey_pub()?.rsa().ok().map(|x| Cow::Owned(x)))
}
}
/// A trait for containers that contain private and public keys
pub trait PrivateKey: PublicKey
where <Self as PublicKey>::KeyType: HasPrivate
{
/// Get or create a `PKey` that contains the private key
#[inline] fn get_pkey_priv(&self) -> Result<Cow<'_, PKey<<Self as PublicKey>::KeyType>>, <Self as PublicKey>::Error>
{
self.get_pkey_pub()
}
/// Get or create an `Rsa` from this private key if possible
#[inline] fn get_rsa_priv(&self) -> Result<Option<Cow<'_, Rsa<Self::KeyType>>>, Self::Error>
{
self.get_rsa_pub()
}
}
impl<T> PublicKey for PKey<T>
where T: HasPublic
{
type KeyType = T;
type Error = Infallible;
fn get_pkey_pub(&self) -> Result<Cow<'_, PKey<Self::KeyType>>, Self::Error>
{
Ok(Cow::Borrowed(self))
}
}
impl<T> PrivateKey for PKey<T>
where T: HasPrivate
{
fn get_pkey_priv(&self) -> Result<Cow<'_, PKey<<Self as PublicKey>::KeyType>>, <Self as PublicKey>::Error>
{
Ok(Cow::Borrowed(self))
}
}
impl<T> PublicKey for Rsa<T>
where T: HasPublic
{
type KeyType = T;
type Error = openssl::error::ErrorStack;
fn get_pkey_pub(&self) -> Result<Cow<'_, PKey<Self::KeyType>>, Self::Error>
{
Ok(Cow::Owned(PKey::from_rsa(self.clone())?))
}
#[inline] fn get_rsa_pub(&self) -> Result<Option<Cow<'_, Rsa<Self::KeyType>>>, Self::Error>
{
Ok(Some(Cow::Borrowed(self)))
}
}
impl<T> PrivateKey for Rsa<T>
where T: HasPrivate
{
fn get_pkey_priv(&self) -> Result<Cow<'_, PKey<<Self as PublicKey>::KeyType>>, <Self as PublicKey>::Error>
{
Ok(Cow::Owned(PKey::from_rsa(self.clone())?))
}
#[inline] fn get_rsa_priv(&self) -> Result<Option<Cow<'_, Rsa<Self::KeyType>>>, Self::Error>
{
Ok(Some(Cow::Borrowed(self)))
}
}

@ -0,0 +1,226 @@
//! Crypto transforms
use super::*;
#[allow(unused_imports)]
use std::{
convert::TryFrom,
marker::Unpin,
io::{
Write,
Read,
},
};
use openssl::{
pkey::HasPrivate,
};
#[cfg(feature="async")]
use tokio::{
io::{
AsyncWrite,
AsyncRead,
},
prelude::*,
};
use consts::RSA_PADDING_NEEDS as PADDING_NEEDS;
/// Encrypt a slice `data` to a new output vector with key `key`
pub fn encrypt_slice_to_vec<T,K>(data: T, key: &K) -> Result<Vec<u8>, Error>
where T: AsRef<[u8]>,
K: PublicKey + ?Sized,
{
let data = data.as_ref();
let mut output = Vec::with_capacity(data.len());
encrypt_slice_sync(data, key, &mut output)?;
Ok(output)
}
/// Decrypt a slice `data` to a new output vector with key `key`
pub fn decrypt_slice_to_vec<T,K>(data: T, key: &K) -> Result<Vec<u8>, Error>
where T: AsRef<[u8]>,
K: PrivateKey + ?Sized,
<K as PublicKey>::KeyType: HasPrivate,
{
let data = data.as_ref();
let mut output = Vec::with_capacity(data.len());
decrypt_slice_sync(data, key, &mut output)?;
Ok(output)
}
/// Encrypt a stream `data` into `output` with `key`. Return the number of bytes *read*.
#[cfg(feature="async")]
pub async fn encrypt<T,K,U>(data: &mut T, key: &K, output: &mut U) -> Result<usize, Error>
where T: AsyncRead + Unpin + ?Sized,
K: PublicKey + ?Sized,
U: AsyncWrite + Unpin + ?Sized
{
let key = key.get_rsa_pub().map_err(|_| Error::Key)?.ok_or(Error::Key)?;
let key_size = usize::try_from(key.size())?;
let max_size = key_size - PADDING_NEEDS;
let mut read_buffer = vec![0u8; max_size];
let mut crypt_buffer = vec![0u8; key_size];
let mut read;
let mut done=0;
while {read = data.read(&mut read_buffer[..]).await?; read!=0} {
done+=read;
read = key.public_encrypt(&read_buffer[..read], &mut crypt_buffer[..], PADDING).map_err(|_| Error::Encrypt)?;
output.write_all(&crypt_buffer[..read]).await?;
}
Ok(done)
}
/// Encrypt a slice `data` into `output` with `key`. Return the number of bytes *written*.
#[cfg(feature="async")]
pub async fn encrypt_slice<T,K,U>(data: T, key: &K, output: &mut U) -> Result<usize, Error>
where T: AsRef<[u8]>,
K: PublicKey + ?Sized,
U: AsyncWrite + Unpin + ?Sized
{
let key = key.get_rsa_pub().map_err(|_| Error::Key)?.ok_or(Error::Key)?;
let key_size = usize::try_from(key.size())?;
let mut crypt_buffer = vec![0u8; key_size];
let read = key.public_encrypt(data.as_ref(), &mut crypt_buffer[..], PADDING).map_err(|_| Error::Encrypt)?;
output.write_all(&crypt_buffer[..read]).await?;
Ok(read)
}
/// Encrypt a stream `data` into `output` with `key`. Return the number of bytes *read*.
pub fn encrypt_sync<T,K,U>(data: &mut T, key: &K, output: &mut U) -> Result<usize, Error>
where T: Read + ?Sized,
K: PublicKey + ?Sized,
U: Write + ?Sized
{
let key = key.get_rsa_pub().map_err(|_| Error::Key)?.ok_or(Error::Key)?;
let key_size = usize::try_from(key.size())?;
let max_size = key_size - PADDING_NEEDS;
let mut read_buffer = vec![0u8; max_size];
let mut crypt_buffer = vec![0u8; key_size];
let mut read;
let mut done=0;
while {read = data.read(&mut read_buffer[..])?; read!=0} {
done+=read;
read = key.public_encrypt(&read_buffer[..read], &mut crypt_buffer[..], PADDING).map_err(|_| Error::Encrypt)?;
output.write_all(&crypt_buffer[..read])?;
}
Ok(done)
}
/// Encrypt a slice `data` into `output` with `key`. Return the number of bytes *written*.
pub fn encrypt_slice_sync<T,K,U>(data: T, key: &K, output: &mut U) -> Result<usize, Error>
where T: AsRef<[u8]>,
K: PublicKey + ?Sized,
U: Write + ?Sized
{
let key = key.get_rsa_pub().map_err(|_| Error::Key)?.ok_or(Error::Key)?;
let key_size = usize::try_from(key.size())?;
let mut crypt_buffer = vec![0u8; key_size];
let read = key.public_encrypt(data.as_ref(), &mut crypt_buffer[..], PADDING).map_err(|_| Error::Encrypt)?;
output.write_all(&crypt_buffer[..read])?;
Ok(read)
}
/// Decrypt slice `data` into `output` with `key`. Return the number of bytes *written*.
#[cfg(feature="async")]
pub async fn decrypt_slice<T,K,U>(data: T, key: &K, output: &mut U) -> Result<usize, Error>
where T: AsRef<[u8]>,
K: PrivateKey + ?Sized,
U: AsyncWrite + Unpin + ?Sized,
<K as PublicKey>::KeyType: HasPrivate,
{
let key = key.get_rsa_priv().map_err(|_| Error::Key)?.ok_or(Error::Key)?;
let key_size = usize::try_from(key.size())?;
let mut crypt_buffer = vec![0u8; key_size];
let read = key.private_decrypt(data.as_ref(), &mut crypt_buffer[..], PADDING).map_err(|_| Error::Decrypt)?;
output.write_all(&crypt_buffer[..read]).await?;
Ok(read)
}
/// Decrypt a stream `data` into `output` with `key`. Return the number of bytes *read*.
#[cfg(feature="async")]
pub async fn decrypt<T,K,U>(data: &mut T, key: &K, output: &mut U) -> Result<usize, Error>
where T: AsyncRead + Unpin + ?Sized,
K: PrivateKey + ?Sized,
U: AsyncWrite + Unpin + ?Sized,
<K as PublicKey>::KeyType: HasPrivate,
{
let key = key.get_rsa_priv().map_err(|_| Error::Key)?.ok_or(Error::Key)?;
let key_size = usize::try_from(key.size())?;
let max_size = key_size - PADDING_NEEDS;
let mut read_buffer = vec![0u8; max_size];
let mut crypt_buffer = vec![0u8; key_size];
let mut read;
let mut done=0;
while {read = data.read(&mut read_buffer[..]).await?; read!=0} {
done+=read;
read = key.private_decrypt(&read_buffer[..read], &mut crypt_buffer[..], PADDING).map_err(|_| Error::Decrypt)?;
output.write_all(&crypt_buffer[..read]).await?;
}
Ok(done)
}
/// Decrypt slice `data` into `output` with `key`. Return the number of bytes *written*.
pub fn decrypt_slice_sync<T,K,U>(data: T, key: &K, output: &mut U) -> Result<usize, Error>
where T: AsRef<[u8]>,
K: PrivateKey + ?Sized,
U: Write + ?Sized,
<K as PublicKey>::KeyType: HasPrivate,
{
let key = key.get_rsa_priv().map_err(|_| Error::Key)?.ok_or(Error::Key)?;
let key_size = usize::try_from(key.size())?;
let mut crypt_buffer = vec![0u8; key_size];
let read = key.private_decrypt(data.as_ref(), &mut crypt_buffer[..], PADDING).map_err(|_| Error::Decrypt)?;
output.write_all(&crypt_buffer[..read])?;
Ok(read)
}
/// Decrypt a stream `data` into `output` with `key`. Return the number of bytes *read*.
pub fn decrypt_sync<T,K,U>(data: &mut T, key: &K, output: &mut U) -> Result<usize, Error>
where T: Read + ?Sized,
K: PrivateKey + ?Sized,
U: Write + ?Sized,
<K as PublicKey>::KeyType: HasPrivate,
{
let key = key.get_rsa_priv().map_err(|_| Error::Key)?.ok_or(Error::Key)?;
let key_size = usize::try_from(key.size())?;
let max_size = key_size - PADDING_NEEDS;
let mut read_buffer = vec![0u8; max_size];
let mut crypt_buffer = vec![0u8; key_size];
let mut read;
let mut done=0;
while {read = data.read(&mut read_buffer[..])?; read!=0} {
done+=read;
read = key.private_decrypt(&read_buffer[..read], &mut crypt_buffer[..], PADDING).map_err(|_| Error::Decrypt)?;
output.write_all(&crypt_buffer[..read])?;
}
Ok(done)
}

@ -0,0 +1,37 @@
//! RSA related thingies
use super::*;
use consts::RSA_PADDING as PADDING;
mod containers;
pub use containers::*;
mod offsets;
mod public_offsets;
mod private_offsets;
mod components;
pub use components::*;
macro_rules! component {
($self:tt -> $t:tt) => (&$self.data[$self.offset_starts.$t()..($self.offset_starts.$t()+$self.offset.$t())])
}
macro_rules! number {
(? $self:tt -> $c:tt) => (openssl::bn::BigNum::from_slice($self.$c())?);
($self:tt -> $c:tt) => (openssl::bn::BigNum::from_slice($self.$c()).unwrap());
}
mod public;
pub use public::*;
mod private;
pub use private::*;
mod sign;
pub use sign::*;
mod crypt;
pub use crypt::*;
pub use crate::error::rsa::*;

@ -0,0 +1,109 @@
//! Traits for offsets of components
pub struct Starts<T: HasOffsets>(T);
pub trait HasOffsets: Sized
{
fn starts(&self) -> Starts<Self>;
fn body_len(&self) -> usize;
}
pub trait HasPublicOffsets: HasOffsets
{
fn n(&self) -> usize;
fn e(&self) -> usize;
}
pub trait HasPrivateOffsets: HasPublicOffsets {
fn d(&self) -> usize;
fn p(&self) -> usize;
fn q(&self) -> usize;
fn dmp1(&self) -> usize;
fn dmq1(&self) -> usize;
fn iqmp(&self) -> usize;
}
pub use super::public_offsets::PublicOffsetGroup;
pub use super::private_offsets::PrivateOffsetGroup;
impl<T> Starts<T>
where T: HasPublicOffsets
{
pub fn n(&self) -> usize
{
self.0.n()
}
pub fn e(&self) -> usize
{
self.0.e()
}
}
impl<T> From<T> for Starts<T>
where T: HasPublicOffsets
{
fn from(from: T) -> Self
{
Self(from)
}
}
impl<T> Starts<T>
where T: HasPrivateOffsets
{
pub fn d(&self) -> usize
{
self.0.d()
}
pub fn p(&self) -> usize
{
self.0.p()
}
pub fn q(&self) -> usize
{
self.0.q()
}
pub fn dmp1(&self) -> usize
{
self.0.dmp1()
}
pub fn dmq1(&self) -> usize
{
self.0.dmq1()
}
pub fn iqmp(&self) -> usize
{
self.0.iqmp()
}
}
// Bullshit
use std::{
cmp::{
PartialEq,Eq,
},
hash::{
Hash,Hasher,
},
fmt::{
self,
Debug,
},
};
impl<T> Copy for Starts<T> where T: Copy + HasOffsets{}
impl<T> Clone for Starts<T> where T: Clone + HasOffsets{#[inline] fn clone(&self) -> Self {Self(self.0.clone())}}
impl<T> Eq for Starts<T> where T: Eq + HasOffsets{}
impl<T> PartialEq for Starts<T> where T: PartialEq + HasOffsets{#[inline] fn eq(&self, other: &Self) -> bool {self.0 == other.0}}
impl<T> Hash for Starts<T>
where T: Hash + HasOffsets
{
#[inline] fn hash<H: Hasher>(&self, state: &mut H) {
self.0.hash(state)
}
}
impl<T> Debug for Starts<T>
where T: HasOffsets + Debug
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result
{
write!(f, "Starts ({:?})", self.0)
}
}

@ -0,0 +1,402 @@
//! Private key components
use super::*;
use offsets::*;
use crate::password::{
Password,
};
#[allow(unused_imports)]
use std::{
borrow::{
Borrow,
Cow,
},
mem::{
size_of,
},
marker::Unpin,
io::{
self,
Write,
Read,
},
convert::{
TryFrom,
},
};
use openssl::{
bn::BigNumRef,
rsa::{
Rsa,
},
pkey::{
Public,
Private,
HasPrivate,
PKey,
},
symm::Cipher,
};
#[cfg(feature="async")]
use tokio::{
io::{
AsyncWrite,
AsyncRead,
},
prelude::*,
};
/// Container for the private & public parts of an RSA key
///
/// # Notes
/// It is always assumed that the internal consistancy and state of the components binary representations is correct.
/// Incorrect internal state can cause panics on all operations.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct RsaPrivateKey
{
data: Vec<u8>,
offset_starts: Starts<PrivateOffsetGroup>,
offset: PrivateOffsetGroup,
}
impl RsaPrivateKey
{
/// Create a new private key from its components
pub fn new(
n: impl Borrow<BigNumRef>,
e: impl Borrow<BigNumRef>,
d: impl Borrow<BigNumRef>,
p: impl Borrow<BigNumRef>,
q: impl Borrow<BigNumRef>,
dmp1: impl Borrow<BigNumRef>,
dmq1: impl Borrow<BigNumRef>,
iqmp: impl Borrow<BigNumRef>
) -> Self
{
fn vectorise(b: impl Borrow<BigNumRef>, data: &mut Vec<u8>) -> usize
{
let bytes = b.borrow().to_vec();
let len = bytes.len();
data.extend(bytes);
len
}
let mut data = Vec::new();
let offset = PrivateOffsetGroup {
n: vectorise(n, &mut data),
e: vectorise(e, &mut data),
d: vectorise(d, &mut data),
p: vectorise(p, &mut data),
q: vectorise(q, &mut data),
dmp1: vectorise(dmp1, &mut data),
dmq1: vectorise(dmq1, &mut data),
iqmp: vectorise(iqmp, &mut data),
};
Self {
offset_starts: offset.starts(),
offset,
data,
}
}
}
impl RsaPrivateKey
{
/// Try to get the RSA private key from this instance
pub fn get_rsa_priv(&self) -> Result<Rsa<Private>, Error>
{
Ok(Rsa::from_private_components(
number!(self -> n),
number!(self -> e),
number!(self -> d),
number!(self -> p),
number!(self -> q),
number!(self -> dmp1),
number!(self -> dmq1),
number!(self -> iqmp)
)?)
}
/// Try to get the RSA public key from this instance of private key
pub fn get_rsa_pub(&self) -> Result<Rsa<Public>, Error>
{
Ok(Rsa::from_public_components(
number!(self -> n),
number!(self -> e)
)?)
}
/// Get the public parts of this private key
pub fn get_public_parts(&self) -> RsaPublicKey
{
RsaPublicKey::new(
self.num_n(),
self.num_e()
)
}
/// Create a PEM string from this instance
pub fn to_pem(&self, pw: Option<&Password>) -> Result<String, Error>
{
let rsa = self.get_rsa_priv()?;
Ok(std::str::from_utf8(&match pw {
Some(password) => {
rsa.private_key_to_pem_passphrase(Cipher::aes_128_cbc(), password.as_ref())?
},
None => {
rsa.private_key_to_pem()?
},
})?.to_owned())
}
/// Try to create an instance from PEM, requesting password if needed
pub fn from_pem<F>(&self, pem: impl AsRef<str>, pw: F) -> Result<Self, Error>
where F: FnOnce() -> Option<Password>
{
let pem = pem.as_ref().as_bytes();
Ok(Rsa::private_key_from_pem_callback(pem, |buf| {
if let Some(pw) = pw() {
Ok(bytes::copy_slice(buf, pw.as_ref()))
} else {
Ok(0)
}
})?.into())
}
/// Validates the RSA key parameters for correctness
pub fn check_key(&self) -> bool
{
self.get_rsa_priv()
.map(|rsa| rsa.check_key().unwrap_or(false))
.unwrap_or(false)
}
/// Try to construct an instance from bytes
pub fn from_bytes(bytes: impl AsRef<[u8]>) -> Result<Self, Error>
{
const OFF_SIZE: usize = size_of::<PrivateOffsetGroup>();
let bytes = bytes.as_ref();
if bytes.len() < OFF_SIZE {
return Err(Error::Binary(BinaryErrorKind::Length{expected: Some(OFF_SIZE), got: Some(bytes.len())}));
}
let offset: &PrivateOffsetGroup = bytes::derefer(&bytes[..OFF_SIZE]);
let bytes = &bytes[OFF_SIZE..];
let sz = offset.body_len();
if bytes.len() < sz {
return Err(Error::Binary(BinaryErrorKind::Length{expected: Some(sz), got: Some(bytes.len())}));
}
Ok(Self{
data: Vec::from(&bytes[..]),
offset_starts: offset.starts(),
offset: *offset,
})
}
/// Write the binary representation of this instance to a new `Vec<u8>`
pub fn to_bytes(&self) -> Vec<u8>
{
let mut output = Vec::new();
self.write_to_sync(&mut output).unwrap();
output
}
/// Return the length of the data body only (not including header).
#[inline] pub fn len(&self) -> usize
{
self.data.len()
}
/// Write this private key as bytes to a stream
#[cfg(feature="async")]
pub async fn write_to<T>(&self, to: &mut T) -> io::Result<usize>
where T: AsyncWrite + Unpin + ?Sized
{
to.write_all(bytes::refer(&self.offset)).await?;
to.write_all(&self.data[..]).await?;
Ok(size_of::<PrivateOffsetGroup>() + self.data.len())
}
/// Write this private key as bytes to a stream
pub fn write_to_sync<T>(&self, to: &mut T) -> io::Result<usize>
where T: Write + ?Sized
{
to.write_all(bytes::refer(&self.offset))?;
to.write_all(&self.data[..])?;
Ok(size_of::<PrivateOffsetGroup>() + self.data.len())
}
/// Read a private key from a stream
#[cfg(feature="async")]
pub async fn read_from<T>(&self, from: &mut T) -> io::Result<Self>
where T: AsyncRead + Unpin + ?Sized
{
const OFF_SIZE: usize = size_of::<PrivateOffsetGroup>();
let offset: PrivateOffsetGroup = {
let mut buffer = [0u8; OFF_SIZE];
if buffer.len() != from.read_exact(&mut buffer[..]).await? {
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "couldn't read offsets"));
} else {
*bytes::derefer(&buffer[..])
}
};
let mut data = vec![0u8; offset.body_len()];
if from.read_exact(&mut data[..]).await? != data.len() {
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "couldn't read data body"));
}
Ok(Self {
data,
offset_starts: offset.starts(),
offset
})
}
/// Read a private key from a stream
pub fn read_from_sync<T>(&self, from: &mut T) -> io::Result<Self>
where T: Read + ?Sized
{
let offset: PrivateOffsetGroup = {
let mut buffer = [0u8; size_of::<PrivateOffsetGroup>()];
from.read_exact(&mut buffer[..])?;
*bytes::derefer(&buffer[..])
};
let mut data = vec![0u8; offset.body_len()];
from.read_exact(&mut data[..])?;
Ok(Self {
data,
offset_starts: offset.starts(),
offset
})
}
}
impl HasComponents for RsaPrivateKey
{
fn raw(&self) -> &[u8]
{
return &self.data[..]
}
}
impl HasPublicComponents for RsaPrivateKey
{
fn n(&self) -> &[u8]
{
component!(self -> n)
}
fn e(&self) -> &[u8]
{
component!(self -> e)
}
}
impl HasPrivateComponents for RsaPrivateKey
{
fn d(&self) -> &[u8]
{
component!(self -> d)
}
fn p(&self) -> &[u8]
{
component!(self -> p)
}
fn q(&self) -> &[u8]
{
component!(self -> q)
}
fn dmp1(&self) -> &[u8]
{
component!(self -> dmp1)
}
fn dmq1(&self) -> &[u8]
{
component!(self -> dmq1)
}
fn iqmp(&self) -> &[u8]
{
component!(self -> iqmp)
}
}
impl<T> From<Rsa<T>> for RsaPrivateKey
where T: HasPrivate
{
fn from(key: Rsa<T>) -> Self
{
Self::new(
key.n(),
key.e(),
key.d(),
key.p().unwrap(),
key.q().unwrap(),
key.dmp1().unwrap(),
key.dmq1().unwrap(),
key.iqmp().unwrap()
)
}
}
impl From<RsaPrivateKey> for Rsa<Private>
{
fn from(from: RsaPrivateKey) -> Self
{
from.get_rsa_priv().unwrap()
}
}
impl From<RsaPrivateKey> for RsaPublicKey
{
fn from(from: RsaPrivateKey) -> Self
{
from.get_public_parts()
}
}
impl PublicKey for RsaPrivateKey
{
type KeyType = Private;
type Error = Error;
fn get_pkey_pub(&self) -> Result<Cow<'_, PKey<Self::KeyType>>, Self::Error>
{
Ok(Cow::Owned(PKey::from_rsa(self.get_rsa_priv()?)?))
}
fn get_rsa_pub(&self) -> Result<Option<Cow<'_, Rsa<Self::KeyType>>>, Self::Error>
{
Ok(Some(Cow::Owned(self.get_pkey_pub()?.rsa()?)))
}
}
impl PrivateKey for RsaPrivateKey{}
impl From<RsaPrivateKey> for Vec<u8>
{
#[inline] fn from(from: RsaPrivateKey) -> Self
{
from.to_bytes()
}
}
impl TryFrom<Vec<u8>> for RsaPrivateKey
{
type Error = Error;
#[inline] fn try_from(from: Vec<u8>) -> Result<Self, Self::Error>
{
Self::from_bytes(from)
}
}

@ -0,0 +1,78 @@
//! Private offsets
use super::offsets::*;
#[repr(C, packed)]
#[derive(Clone,Copy,Debug,Eq,PartialEq,Hash,Default)]
pub struct PrivateOffsetGroup
{
pub n: usize,
pub e: usize,
pub d: usize,
pub p: usize,
pub q: usize,
pub dmp1: usize,
pub dmq1: usize,
pub iqmp: usize,
}
impl HasOffsets for PrivateOffsetGroup
{
fn starts(&self) -> Starts<Self>
{
Self {
n: 0,
e: self.n,
d: self.n+self.e,
p: self.n+self.e+self.d,
q: self.n+self.e+self.d+self.p,
dmp1: self.n+self.e+self.d+self.p+self.q,
dmq1: self.n+self.e+self.d+self.p+self.q+self.dmp1,
iqmp: self.n+self.e+self.d+self.p+self.q+self.dmp1+self.dmq1,
}.into()
}
fn body_len(&self) -> usize
{
self.n+self.e+self.d+self.p+self.q+self.dmp1+self.dmq1+self.iqmp
}
}
impl HasPublicOffsets for PrivateOffsetGroup
{
fn n(&self) -> usize
{
self.n
}
fn e(&self) -> usize
{
self.e
}
}
impl HasPrivateOffsets for PrivateOffsetGroup
{
fn d(&self) -> usize
{
self.d
}
fn p(&self) -> usize
{
self.p
}
fn q(&self) -> usize
{
self.q
}
fn dmp1(&self) -> usize
{
self.dmp1
}
fn dmq1(&self) -> usize
{
self.dmq1
}
fn iqmp(&self) -> usize
{
self.iqmp
}
}

@ -0,0 +1,320 @@
//! Public RSA key components
use super::*;
use offsets::*;
#[allow(unused_imports)]
use std::{
borrow::{
Borrow,
Cow,
},
io::{
self,
Write,
Read,
},
mem::size_of,
marker::Unpin,
convert::{
TryFrom,
},
};
use openssl::{
bn::{
BigNumRef,
},
rsa::{
Rsa,
},
pkey::{
Public,
HasPublic,
PKey,
},
};
#[cfg(feature="async")]
use tokio::{
io::{
AsyncWrite,
AsyncRead,
},
prelude::*,
};
/// Container for RSA public key components
///
/// # Notes
/// It is always assumed that the internal consistancy and state of the components binary representations is correct.
/// Incorrect internal state can cause panics on all operations.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct RsaPublicKey
{
data: Vec<u8>,
offset_starts: Starts<PublicOffsetGroup>,
offset: PublicOffsetGroup,
}
impl RsaPublicKey
{
/// Create a new RSAPublicKey from components
pub fn new(
n: impl Borrow<BigNumRef>,
e: impl Borrow<BigNumRef>
) -> Self
{
fn vectorise<T: Write,U: Borrow<BigNumRef>>(b: U, data: &mut T) -> usize
{
let bytes = b.borrow().to_vec();
data.write(bytes.as_slice()).unwrap()
}
let mut data = Vec::new();
let offset = offsets::PublicOffsetGroup {
n: vectorise(n, &mut data),
e: vectorise(e, &mut data),
};
Self {
offset_starts: offset.starts(),
offset,
data,
}
}
/// Create a PEM string from this instance
pub fn to_pem(&self) -> Result<String, Error>
{
let pkey = self.get_pkey_pub()?;
let pem = pkey.public_key_to_pem()?;
Ok(std::str::from_utf8(&pem[..])?.to_string())
}
/// Try to create a new instance from a PEM string
pub fn from_pem(pem: impl AsRef<str>) -> Result<Self, Error>
{
let pem = pem.as_ref();
let pem = pem.as_bytes();
Ok(Rsa::public_key_from_pem(pem)?.into())
}
/// Validates the RSA key parameters for correctness
pub fn check_key(&self) -> bool
{
self.get_rsa_pub()
.map(|_| true)
.unwrap_or(false)
}
/// Try to get the RSA public key from this instance
pub fn get_rsa_pub(&self) -> Result<Rsa<Public>, Error>
{
Ok(Rsa::from_public_components(
number!(self -> n),
number!(self -> e)
)?)
}
/// Try to construct an instance from bytes
pub fn from_bytes(bytes: impl AsRef<[u8]>) -> Result<Self, Error>
{
let bytes = bytes.as_ref();
if bytes.len() < size_of::<PublicOffsetGroup>() {
return Err(Error::Binary(BinaryErrorKind::Length{expected: Some(size_of::<PublicOffsetGroup>()), got: Some(bytes.len())}));
}
let offset: &PublicOffsetGroup = bytes::derefer(&bytes[..size_of::<PublicOffsetGroup>()]);
let bytes = &bytes[size_of::<PublicOffsetGroup>()..];
let sz = offset.body_len();
if bytes.len() < sz {
return Err(Error::Binary(BinaryErrorKind::Length{expected:Some(sz), got: Some(bytes.len())}));
}
Ok(Self {
data: Vec::from(&bytes[..]),
offset_starts: offset.starts(),
offset: *offset,
})
}
/// Write the binary representation of this instance to a new `Vec<u8>`
pub fn to_bytes(&self) -> Vec<u8>
{
let mut output = Vec::new();
self.write_to_sync(&mut output).unwrap();
output
}
/// Return the length of the data body only (not including header).
#[inline] pub fn len(&self) -> usize
{
self.data.len()
}
/// Write this public key as bytes to a stream
#[cfg(feature="async")]
pub async fn write_to<T>(&self, to: &mut T) -> io::Result<usize>
where T: AsyncWrite + Unpin + ?Sized
{
to.write_all(bytes::refer(&self.offset)).await?;
to.write_all(&self.data[..]).await?;
Ok(size_of::<PublicOffsetGroup>() + self.data.len())
}
/// Write this public key as bytes to a stream
pub fn write_to_sync<T>(&self, to: &mut T) -> io::Result<usize>
where T: Write + ?Sized
{
to.write_all(bytes::refer(&self.offset))?;
to.write_all(&self.data[..])?;
Ok(size_of::<PublicOffsetGroup>() + self.data.len())
}
/// Read a public key from a stream
#[cfg(feature="async")]
pub async fn read_from<T>(&self, from: &mut T) -> io::Result<Self>
where T: AsyncRead + Unpin + ?Sized
{
let offset: PublicOffsetGroup = {
let mut buffer = [0u8; size_of::<PublicOffsetGroup>()];
if buffer.len() != from.read_exact(&mut buffer[..]).await? {
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "couldn't read offsets"));
} else {
*bytes::derefer(&buffer[..])
}
};
let mut data = vec![0u8; offset.body_len()];
if from.read_exact(&mut data[..]).await? != data.len() {
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "couldn't read data body"));
}
Ok(Self {
data,
offset_starts: offset.starts(),
offset
})
}
/// Read a public key from a stream
pub fn read_from_sync<T>(&self, from: &mut T) -> io::Result<Self>
where T: Read + ?Sized
{
let offset: PublicOffsetGroup = {
let mut buffer = [0u8; size_of::<PublicOffsetGroup>()];
from.read_exact(&mut buffer[..])?;
*bytes::derefer(&buffer[..])
};
let mut data = vec![0u8; offset.body_len()];
from.read_exact(&mut data[..])?;
Ok(Self {
data,
offset_starts: offset.starts(),
offset
})
}
}
impl HasComponents for RsaPublicKey
{
fn raw(&self) -> &[u8]
{
&self.data[..]
}
}
impl From<RsaPublicKey> for Rsa<Public>
{
#[inline] fn from(key: RsaPublicKey) -> Rsa<Public>
{
key.get_rsa_pub().unwrap()
}
}
impl From<RsaPublicKey> for PKey<Public>
{
fn from(from: RsaPublicKey) -> Self
{
PKey::from_rsa(from.into()).unwrap()
}
}
impl<T> From<PKey<T>> for RsaPublicKey
where T: HasPublic
{
fn from(from: PKey<T>) -> Self
{
from.rsa().unwrap().into()
}
}
impl PublicKey for RsaPublicKey
{
type KeyType = Public;
type Error = Error;
fn get_pkey_pub(&self) -> Result<Cow<'_, PKey<Self::KeyType>>, Self::Error>
{
Ok(Cow::Owned(PKey::from_rsa(Rsa::from_public_components(number!(self -> n), number!(self -> e))?)?))
}
fn get_rsa_pub(&self) -> Result<Option<Cow<'_, Rsa<Self::KeyType>>>, Self::Error>
{
Ok(Some(Cow::Owned(self.get_pkey_pub()?.rsa()?)))
}
}
impl<T> From<Rsa<T>> for RsaPublicKey
where T: HasPublic
{
fn from(key: Rsa<T>) -> Self
{
Self::new(key.n(),
key.e())
}
}
impl HasPublicComponents for RsaPublicKey
{
fn n(&self) -> &[u8]
{
component!(self -> n)
}
fn e(&self) -> &[u8]
{
component!(self -> e)
}
}
impl From<RsaPublicKey> for Vec<u8>
{
fn from(key: RsaPublicKey) -> Self
{
let mut vec = Self::with_capacity(key.data.len()+size_of::<PublicOffsetGroup>());
vec.extend_from_slice(bytes::refer(&key.offset));
vec.extend(key.data);
vec
}
}
impl TryFrom<Vec<u8>> for RsaPublicKey
{
type Error = Error;
#[inline] fn try_from(from: Vec<u8>) -> Result<Self, Self::Error>
{
Self::from_bytes(from)
}
}

@ -0,0 +1,37 @@
//! Offsets for a public key container
use super::offsets::*;
#[repr(C, packed)]
#[derive(Clone,Copy,Debug,Eq,PartialEq,Hash,Default)]
pub struct PublicOffsetGroup
{
pub n: usize,
pub e: usize,
}
impl HasOffsets for PublicOffsetGroup
{
fn starts(&self) -> Starts<Self>
{
Self {
n: 0,
e: self.n,
}.into()
}
fn body_len(&self) -> usize
{
self.n+self.e
}
}
impl HasPublicOffsets for PublicOffsetGroup
{
fn n(&self) -> usize
{
self.n
}
fn e(&self) -> usize
{
self.e
}
}

@ -0,0 +1,255 @@
//! RSA signing
use super::*;
#[allow(unused_imports)]
use std::{
cmp::{PartialEq,Eq,},
hash::{Hash,Hasher,},
fmt::{
self,
Display,
Debug,
},
marker::Unpin,
io::{
Read,
},
};
use openssl::{
hash::{
MessageDigest,
},
sign::{
Signer,
Verifier,
},
pkey::{
HasPrivate,
},
};
#[cfg(feature="async")]
use tokio::{
io::{
AsyncRead,
},
prelude::*,
};
use consts::RSA_SIG_SIZE as SIZE;
use consts::BUFFER_SIZE;
/// Represents an RSA signature
#[derive(Copy, Clone)]
pub struct Signature([u8; SIZE]);
impl Signature
{
/// Create from an exact array
pub const fn from_exact(from: [u8; SIZE]) -> Self
{
Self(from)
}
/// Create from a silce.
///
/// # Panics
/// If `from` is not at least `RSA_SIG_SIZE` bytes long
pub fn from_slice(from: impl AsRef<[u8]>) -> Self
{
let mut output = [0u8; SIZE];
assert_eq!(bytes::copy_slice(&mut output[..], from.as_ref()), SIZE);
Self(output)
}
/// Verify this signature for a slice of data
pub fn verify_slice<T,K>(&self, slice: T, key: &K) -> Result<bool, Error>
where K: PublicKey + ?Sized,
T: AsRef<[u8]>
{
let pkey = key.get_pkey_pub().map_err(|_| Error::Key)?;
let mut veri = Verifier::new(MessageDigest::sha256(), &pkey)?;
veri.update(slice.as_ref())?;
Ok(veri.verify(&self.0[..])?)
}
/// Verify this signature for a stream of data. Returns the success and number of bytes read.
#[cfg(feature="async")]
pub async fn verify<T,K>(&self, from: &mut T, key: &K) -> Result<(bool, usize), Error>
where T: AsyncRead + Unpin + ?Sized,
K: PublicKey + ?Sized
{
let pkey = key.get_pkey_pub().map_err(|_| Error::Key)?;
let mut veri = Verifier::new(MessageDigest::sha256(), &pkey)?;
let done = {
let mut read;
let mut done = 0;
let mut buffer = [0u8; BUFFER_SIZE];
while {read = from.read(&mut buffer[..]).await?; read!=0} {
veri.update(&buffer[..read])?;
done+=read;
}
done
};
Ok((veri.verify(&self.0[..])?, done))
}
/// Verify this signature for a stream of data. Returns the success and number of bytes read.
pub fn verify_sync<T,K>(&self, from: &mut T, key: &K) -> Result<(bool, usize), Error>
where T: Read + ?Sized,
K: PublicKey + ?Sized
{
let pkey = key.get_pkey_pub().map_err(|_| Error::Key)?;
let mut veri = Verifier::new(MessageDigest::sha256(), &pkey)?;
let done = {
let mut read;
let mut done = 0;
let mut buffer = [0u8; BUFFER_SIZE];
while {read = from.read(&mut buffer[..])?; read!=0} {
veri.update(&buffer[..read])?;
done+=read;
}
done
};
Ok((veri.verify(&self.0[..])?, done))
}
}
/// Compute the signature for a slice of bytes
pub fn sign_slice<T,K>(data: T, key: &K) -> Result<Signature, Error>
where T: AsRef<[u8]>,
K: PrivateKey + ?Sized,
<K as PublicKey>::KeyType: HasPrivate //ugh
{
let pkey = key.get_pkey_priv().map_err(|_| Error::Key)?;
let mut signer = Signer::new(MessageDigest::sha256(), &pkey)?;
signer.update(data.as_ref())?;
let mut output = [0u8; SIZE];
assert_eq!(signer.sign(&mut output[..])?, SIZE);
Ok(Signature(output))
}
/// Compute the signature for this stream, returning it and the number of bytes read
#[cfg(feature="async")]
pub async fn sign<T,K>(data: &mut T, key: &K) -> Result<(Signature, usize), Error>
where T: AsyncRead + Unpin + ?Sized,
K: PrivateKey + ?Sized,
<K as PublicKey>::KeyType: HasPrivate //ugh
{
let pkey = key.get_pkey_priv().map_err(|_| Error::Key)?;
let mut signer = Signer::new(MessageDigest::sha256(), &pkey)?;
let done = {
let mut read;
let mut done=0;
let mut buffer = [0u8; SIZE];
while {read = data.read(&mut buffer[..]).await?; read!=0} {
signer.update(&buffer[..read])?;
done+=read;
}
done
};
let mut output = [0u8; SIZE];
assert_eq!(signer.sign(&mut output[..])?, SIZE);
Ok((Signature(output), done))
}
/// Compute the signature for this stream, returning it and the number of bytes read
pub fn sign_sync<T,K>(data: &mut T, key: &K) -> Result<(Signature, usize), Error>
where T: Read + ?Sized,
K: PrivateKey + ?Sized,
<K as PublicKey>::KeyType: HasPrivate //ugh
{
let pkey = key.get_pkey_priv().map_err(|_| Error::Key)?;
let mut signer = Signer::new(MessageDigest::sha256(), &pkey)?;
let done = {
let mut read;
let mut done=0;
let mut buffer = [0u8; SIZE];
while {read = data.read(&mut buffer[..])?; read!=0} {
signer.update(&buffer[..read])?;
done+=read;
}
done
};
let mut output = [0u8; SIZE];
assert_eq!(signer.sign(&mut output[..])?, SIZE);
Ok((Signature(output), done))
}
// Boilerplate
impl AsRef<[u8]> for Signature
{
fn as_ref(&self) -> &[u8]
{
&self.0[..]
}
}
impl AsMut<[u8]> for Signature
{
fn as_mut(&mut self) -> &mut [u8]
{
&mut self.0[..]
}
}
impl Default for Signature
{
#[inline]
fn default() -> Self
{
Self([0u8; SIZE])
}
}
impl Eq for Signature{}
impl PartialEq for Signature
{
#[inline] fn eq(&self, other: &Self) -> bool
{
&self.0[..] == &other.0[..]
}
}
impl Hash for Signature {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0[..].hash(state)
}
}
impl Debug for Signature
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result
{
write!(f, "Signature ({:?})", &self.0[..])
}
}
impl Display for Signature
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result
{
write!(f, "Signature (")?;
for byte in self.0.iter()
{
write!(f, "{:0x}", byte)?;
}
write!(f,")")
}
}
Loading…
Cancel
Save