You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
242 lines
7.0 KiB
242 lines
7.0 KiB
#pragma once
|
|
|
|
#include <bit>
|
|
#include <stdexcept>
|
|
#include <array>
|
|
|
|
#include <climits>
|
|
|
|
#ifndef _RNGXX_IMPL
|
|
#define _RNGXX_COMMON_MINIMAL
|
|
#endif
|
|
#include "rngxx/internal/common.h"
|
|
#ifndef _RNGXX_IMPL
|
|
#undef _RNGXX_COMMON_MINIMAL
|
|
#endif
|
|
|
|
#define CTOR_COPY(name) name(const name& copy)
|
|
#define CTOR_MOVE(name) name(name&& move)
|
|
|
|
// ugly hack to get around the absolutely retarded name lookup restrictions when overriding
|
|
#define RNG_OVERRIDE(ty, nm, rest) using Random::nm; ty nm rest override
|
|
|
|
namespace _rng__util {
|
|
struct divp
|
|
{
|
|
inline consteval divp(usize n, usize o)
|
|
: d(n / o),
|
|
r(n % o){}
|
|
const usize d,r;
|
|
|
|
inline consteval bool exact() const { return d && !r; }
|
|
inline consteval bool none() const { return !d; }
|
|
|
|
template<typename T>
|
|
inline static consteval divp type(usize bytes) { return divp(bytes, sizeof(T)); }
|
|
};
|
|
}
|
|
|
|
|
|
struct InvalidRandomSample final : public std::exception {
|
|
inline explicit InvalidRandomSample(f64 s) : std::exception(), value(s){}
|
|
inline CTOR_COPY(InvalidRandomSample): std::exception(copy), value(copy.value){}
|
|
|
|
const f64 value;
|
|
};
|
|
struct ObjectMoved final : public std::exception{};
|
|
|
|
/// Interface for a simple random number generator
|
|
///
|
|
/// # Must override
|
|
/// f64 _sample() // A representation of a random range. The value must be between `0..=1`
|
|
///
|
|
/// # Should override
|
|
/// void next_bytes(u8* ptr, usize n); // Random bytes. The default implementation falls back to _sample() for each byte. This is very inefficient.
|
|
///
|
|
/// void next_v32(u32* ptr, usize n); // Vectorised random bytes (4 bytes ptr iteration.) If 32-bit vectorised outputs are possible for your implementation, you should override this (falls back to next_bytes(ptr, n)) NOTE: `n` is the number of `u32`s `ptr` points to, **not** the number of bytes.
|
|
/// void next_v64(u64* ptr, usize n); // Same as above, but for 8 byte iterations (64 bits.)
|
|
struct Random
|
|
{
|
|
template<typename T>
|
|
struct iterator { //TODO: Implement this in another file (has to be header because of template :/)
|
|
friend class Random;
|
|
|
|
//TODO: Make this work with foreach(), and STL iterator APIs somehow
|
|
|
|
inline CTOR_COPY(iterator<T>) : rng(copy.rng){}
|
|
inline CTOR_MOVE(iterator<T>) : rng(move.rng) {
|
|
*const_cast<Random**>(&move.rng) = nullptr;
|
|
}
|
|
|
|
inline virtual ~iterator(){}
|
|
|
|
protected:
|
|
virtual T _sample() { if (LIKELY(rng)) return rng->next<T>(); else throw ObjectMoved(); }
|
|
virtual inline void _init() {}
|
|
private:
|
|
inline explicit iterator(Random& rng) : rng(&rng){ _init(); }
|
|
|
|
Random* const rng;
|
|
};
|
|
public:
|
|
|
|
inline Random(){}
|
|
inline virtual ~Random(){}
|
|
|
|
inline f64 next_f64() { return sample(); }
|
|
inline f32 next_f32() { return (f32)sample(); }
|
|
|
|
virtual bool next_bool();
|
|
|
|
#define NDEF(t) inline virtual t next_ ## t() { return next_ ## t(_max_ ## t()); }
|
|
#define NDEFF(n) NDEF(i ## n) NDEF(u ## n)
|
|
NDEFF(8)
|
|
NDEFF(16)
|
|
NDEFF(32)
|
|
NDEFF(64)
|
|
#undef NDEFF
|
|
#undef NDEF
|
|
virtual void next_u8(u8* a, usize n);
|
|
virtual void next_i8(i8* a, usize n);
|
|
|
|
virtual void next_u16(u16* a, usize n);
|
|
virtual void next_i16(i16* a, usize n);
|
|
|
|
virtual void next_u32(u32* a, usize n);
|
|
virtual void next_i32(i32* a, usize n);
|
|
|
|
virtual void next_u64(u64* a, usize n);
|
|
virtual void next_i64(i64* a, usize n);
|
|
|
|
virtual i8 next_i8(i8 max);
|
|
i8 next_i8(i8 min, i8 max);
|
|
|
|
virtual u8 next_u8(u8 max);
|
|
u8 next_u8(u8 min, u8 max);
|
|
|
|
virtual u16 next_u16(u16 max);
|
|
u16 next_u16(u16 min, u16 max);
|
|
|
|
virtual i16 next_i16(i16 max);
|
|
i16 next_i16(i16 min, i16 max);
|
|
|
|
virtual i32 next_i32(i32 max);
|
|
i32 next_i32(i32 min, i32 max);
|
|
|
|
virtual i64 next_i64(i64 max);
|
|
i64 next_i64(i64 min, i64 max);
|
|
|
|
virtual u32 next_u32(u32 max);
|
|
u32 next_u32(u32 min, u32 max);
|
|
|
|
virtual u64 next_u64(u64 max);
|
|
u64 next_u64(u64 min, u64 max);
|
|
|
|
virtual inline f32 next_f32(f32 max) { return next_f32() * max; }
|
|
inline f32 next_f32(f32 min, f32 max) { return min + next_f32(max-min); }
|
|
|
|
virtual inline f64 next_f64(f64 max) { return next_f64() * max; }
|
|
inline f64 next_f64(f64 min, f64 max) { return min + next_f64(max-min); }
|
|
|
|
virtual void next_bytes(u8* bytes, usize n);
|
|
|
|
template<usize N>
|
|
inline void next_bytes(u8 (&a)[N]) {
|
|
_next_bytes<N>(a);
|
|
}
|
|
template<usize N>
|
|
inline void next_bytes(std::array<u8, N>& ar)
|
|
{
|
|
// XXX: this doesn't seem to work (aliasing issues?)
|
|
_next_bytes<N>(&ar[0]);
|
|
}
|
|
|
|
template<typename T>
|
|
inline T next() {
|
|
std::array<u8, sizeof(T)> arr;
|
|
|
|
next_bytes(arr);
|
|
|
|
return std::bit_cast<T>(arr);
|
|
}
|
|
template<typename T>
|
|
inline T next(T min, T max);
|
|
template<typename T>
|
|
inline T next(T max);
|
|
|
|
template<typename T>
|
|
inline iterator<T> iter() { return iterator(*this); } //TODO: An iterator that yields `next<T>()` forever.
|
|
|
|
template<typename T>
|
|
constexpr inline T max_for() const;
|
|
protected:
|
|
//TODO: Should we have _min_* functions too? or just continue to use 0 as the lower bound for next_*(..max)? I think use 0...
|
|
#define MAX(T, M) constexpr inline virtual T _max_ ## T() const { return M; }
|
|
#define MAXX(n) MAX(u ## n, UINT ## n ## _MAX) MAX(i ## n, INT ## n ## _MAX)
|
|
MAXX(8)
|
|
MAXX(16)
|
|
MAXX(32)
|
|
MAXX(64)
|
|
#undef MAXX
|
|
#undef MAX
|
|
protected:
|
|
//constexpr inline virtual i8 _max() const { return 100; } // use limits.h stuff instead.
|
|
|
|
// Vectorised versions of `next_bytes()`. These will fall back to that if they are not overriden, but if the implementation has a more efficient way of generating 4/8 bytes of random data it should override these.
|
|
//
|
|
// These should produce entirely random (not bounded or weighted) results, not confined to the integer types they take.
|
|
virtual void next_v64(u64* p, usize n);
|
|
virtual void next_v32(u32* p, usize n);
|
|
|
|
// Main sample function. Must return between 0..=1
|
|
// If nothing else is overrided, this value is used for everything else.
|
|
// It is recommended to override `next_bytes()` too however.
|
|
virtual f64 _sample() = 0;
|
|
|
|
f64 sample();
|
|
|
|
private:
|
|
template<usize N>
|
|
inline void _next_bytes(u8* a)
|
|
{
|
|
using namespace _rng__util;
|
|
constexpr const auto rem64 = divp::type<u64>(N);
|
|
u8* ptr = a;
|
|
if constexpr(rem64.d) {
|
|
next_v64(reinterpret_cast<u64*>(ptr), rem64.d); ptr+= rem64.d * sizeof(u64);
|
|
}
|
|
constexpr const auto rem32 = divp::type<u32>(rem64.r);
|
|
if constexpr(rem32.d) {
|
|
next_v32(reinterpret_cast<u32*>(ptr), rem32.d); ptr+=rem32.d * sizeof(u32);
|
|
}
|
|
if constexpr(rem32.r) {
|
|
next_bytes(ptr, rem32.r);
|
|
}
|
|
}
|
|
};
|
|
#define DEFTT(n) DEFT(i ## n) DEFT(u ## n)
|
|
#define DEFT(T) template<> inline T Random::max_for< T >() const { return _max_ ## T(); }
|
|
#define DEF \
|
|
DEFTT(8) \
|
|
DEFTT(16) \
|
|
DEFTT(32) \
|
|
DEFTT(64) \
|
|
//DEFTT(128)
|
|
DEF
|
|
#undef DEFT
|
|
#define DEFT(T) template<> inline T Random::next< T >() { return next_ ## T(); } \
|
|
template<> inline T Random::next< T >(T min, T max) { return next_ ## T(min, max); } \
|
|
template<> inline T Random::next< T >(T max) { return next_ ## T(max); }
|
|
template<> inline bool Random::next<bool>() { return next_bool(); }
|
|
//template<> inline f64 Random::next<f64>() { return next_f64(); }
|
|
//template<> inline f32 Random::next<f32>() { return next_f32(); }
|
|
DEFT(f32)
|
|
DEFT(f64)
|
|
DEF
|
|
#undef DEF
|
|
#undef DEFTT
|
|
#undef DEFT
|
|
|
|
#undef CTOR_COPY
|
|
#undef CTOR_MOVE
|