sanitised namespace and header

cpp
Avril 4 years ago
parent 5c8f4b14b4
commit 003dbf27e8
Signed by: flanchan
GPG Key ID: 284488987C31F630

@ -4,9 +4,9 @@
#include <memory> #include <memory>
#include "slice.hpp" #include "cow/slice.hpp"
struct Cow : public Span<unsigned char> { struct Cow : public _cow_util::Span<unsigned char> {
struct Fake; struct Fake;
Cow() = delete; Cow() = delete;

@ -0,0 +1,114 @@
#pragma once
namespace _cow_util {
/// A type that spans a sized region of memory
template<typename T>
struct Span {
virtual const void* area() const =0;
virtual void* area() = 0;
virtual size_t size() const = 0;
inline T* ptr() { return (T*)area(); }
inline const T* ptr() const { return (const T*)area(); }
inline size_t size_bytes() const { return size() * sizeof(T); }
inline unsigned char* as_bytes() { return (unsigned char*)area(); }
inline const unsigned char* as_bytes() const { return (const unsigned char*)area(); }
inline T& operator[](size_t index) {
if(index >= size()) throw "index out of range";
return ptr()[index];
}
inline const T& operator[](size_t index) const {
if(index >= size()) throw "index out of range";
return ptr()[index];
}
inline T* operator&() { return &(*this)[0]; }
inline const T* operator&() const {return &(*this)[0]; }
inline T* operator->() { return &(*this)[0]; }
inline const T* operator->() const {return &(*this)[0]; }
inline T& operator*() { return (*this)[0]; }
inline const T& operator*() const { return (*this)[0]; }
template<typename U>
inline U* area_as() requires(sizeof(T) % sizeof(U) == 0) { return (U*)area(); }
template<typename U>
inline const U* area_as() const requires(sizeof(T) % sizeof(U) == 0) { return (U*)area(); }
template<typename U>
size_t size_as() const requires(sizeof(T) % sizeof(U) == 0) { return size_bytes() / sizeof(U); }
struct Slice;
inline bool bounds_ok(size_t start) const
{
return start < size();
}
inline bool bounds_ok(size_t start, size_t len) const
{
return (start + len) <= size() && bounds_ok(start);
}
inline ssize_t wrap_len(ssize_t len) const
{
if(size() ==0 ) return 0;
return len < 0 ? wrap_len(size() + len) : ((size_t)len) % size();
}
/// Slice (absolute). Specify start and end.
inline const Slice slice_abs(size_t start, size_t end) const { auto len = end -start; if(bounds_ok(start,len)) return Slice(const_cast<T*>(ptr()+start), len); else throw "Out of bounds slice"; }
inline Slice slice_abs(size_t start, size_t end) { auto len = end -start; if(bounds_ok(start,len)) return Slice(ptr()+start, len); else throw "Out of bounds slice"; }
/// Slice (relative). Specify start and length.
inline const Slice slice(size_t start, size_t len) const { if(bounds_ok(start,len)) return Slice(const_cast<T*>(ptr()+start), len); else throw "Out of bounds slice"; }
inline Slice slice(size_t start, size_t len) { if(bounds_ok(start,len)) return Slice(ptr()+start, len); else throw "Out of bounds slice"; }
/// Slice from 0. Specify length.
inline Slice slice(size_t len) { return slice(0, len); }
inline const Slice slice(size_t len) const { return slice(0, len); }//slice(start, size()-start); }
/// Slice total.
inline Slice slice() { return slice(0, size()); }
inline const Slice slice() const { return slice(0, size()); }
/// Slice wrapping. Specify start and end that may wrap over and/or under the span's size.
inline Slice slice_wrap(ssize_t start, ssize_t end) { return slice_abs((size_t)wrap_len(start), (size_t)wrap_len(end)); }
inline const Slice slice_wrap(ssize_t start, ssize_t end) const { return slice_abs((size_t)wrap_len(start), (size_t)wrap_len(end)); }
inline Slice slice_wrap(ssize_t len) { return slice_abs((size_t)wrap_len(len)); }
inline const Slice slice_wrap(ssize_t len) const { return slice_abs((size_t)wrap_len(len)); }
template<typename U>
inline Span<U>::Slice reinterpret() { return typename Span<U>::Slice((U*)area(), size_bytes() / sizeof(U)); }
template<typename U>
inline Span<const U>::Slice reinterpret() const { return typename Span<const U>::Slice((const U*)area(), size_bytes() / sizeof(U)); }
};
/// A slice of memory with a backing pointer and size.
template<typename T>
struct Span<T>::Slice : public Span<T> {
inline Slice(T* ptr, size_t sz) : _area((void*)ptr), _size(sz){}
inline Slice(const Span<T>& slice) : _area(const_cast<void*>(slice.area())), _size(slice.size()){}
inline Slice(const Slice& copy) = default;
inline Slice(Slice&& copy) : _area(copy._area), _size(copy._size){ *const_cast<size_t*>(&copy._size) = 0; }
Slice() = delete;
inline const void* area() const override { return _area; }
inline void* area() override { return _area; }
inline size_t size() const override { return _size; }
private:
void* const _area;
const size_t _size;
};
template<typename T>
using Slice = Span<T>::Slice;
}

@ -1,112 +0,0 @@
#pragma once
/// A type that spans a sized region of memory
template<typename T>
struct Span {
virtual const void* area() const =0;
virtual void* area() = 0;
virtual size_t size() const = 0;
inline T* ptr() { return (T*)area(); }
inline const T* ptr() const { return (const T*)area(); }
inline size_t size_bytes() const { return size() * sizeof(T); }
inline unsigned char* as_bytes() { return (unsigned char*)area(); }
inline const unsigned char* as_bytes() const { return (const unsigned char*)area(); }
inline T& operator[](size_t index) {
if(index >= size()) throw "index out of range";
return ptr()[index];
}
inline const T& operator[](size_t index) const {
if(index >= size()) throw "index out of range";
return ptr()[index];
}
inline T* operator&() { return &(*this)[0]; }
inline const T* operator&() const {return &(*this)[0]; }
inline T* operator->() { return &(*this)[0]; }
inline const T* operator->() const {return &(*this)[0]; }
inline T& operator*() { return (*this)[0]; }
inline const T& operator*() const { return (*this)[0]; }
template<typename U>
inline U* area_as() requires(sizeof(T) % sizeof(U) == 0) { return (U*)area(); }
template<typename U>
inline const U* area_as() const requires(sizeof(T) % sizeof(U) == 0) { return (U*)area(); }
template<typename U>
size_t size_as() const requires(sizeof(T) % sizeof(U) == 0) { return size_bytes() / sizeof(U); }
struct Slice;
inline bool bounds_ok(size_t start) const
{
return start < size();
}
inline bool bounds_ok(size_t start, size_t len) const
{
return (start + len) <= size() && bounds_ok(start);
}
inline ssize_t wrap_len(ssize_t len) const
{
if(size() ==0 ) return 0;
return len < 0 ? wrap_len(size() + len) : ((size_t)len) % size();
}
/// Slice (absolute). Specify start and end.
inline const Slice slice_abs(size_t start, size_t end) const { auto len = end -start; if(bounds_ok(start,len)) return Slice(const_cast<T*>(ptr()+start), len); else throw "Out of bounds slice"; }
inline Slice slice_abs(size_t start, size_t end) { auto len = end -start; if(bounds_ok(start,len)) return Slice(ptr()+start, len); else throw "Out of bounds slice"; }
/// Slice (relative). Specify start and length.
inline const Slice slice(size_t start, size_t len) const { if(bounds_ok(start,len)) return Slice(const_cast<T*>(ptr()+start), len); else throw "Out of bounds slice"; }
inline Slice slice(size_t start, size_t len) { if(bounds_ok(start,len)) return Slice(ptr()+start, len); else throw "Out of bounds slice"; }
/// Slice from 0. Specify length.
inline Slice slice(size_t len) { return slice(0, len); }
inline const Slice slice(size_t len) const { return slice(0, len); }//slice(start, size()-start); }
/// Slice total.
inline Slice slice() { return slice(0, size()); }
inline const Slice slice() const { return slice(0, size()); }
/// Slice wrapping. Specify start and end that may wrap over and/or under the span's size.
inline Slice slice_wrap(ssize_t start, ssize_t end) { return slice_abs((size_t)wrap_len(start), (size_t)wrap_len(end)); }
inline const Slice slice_wrap(ssize_t start, ssize_t end) const { return slice_abs((size_t)wrap_len(start), (size_t)wrap_len(end)); }
inline Slice slice_wrap(ssize_t len) { return slice_abs((size_t)wrap_len(len)); }
inline const Slice slice_wrap(ssize_t len) const { return slice_abs((size_t)wrap_len(len)); }
template<typename U>
inline Span<U>::Slice reinterpret() { return typename Span<U>::Slice((U*)area(), size_bytes() / sizeof(U)); }
template<typename U>
inline Span<const U>::Slice reinterpret() const { return typename Span<const U>::Slice((const U*)area(), size_bytes() / sizeof(U)); }
};
/// A slice of memory with a backing pointer and size.
template<typename T>
struct Span<T>::Slice : public Span<T> {
inline Slice(T* ptr, size_t sz) : _area((void*)ptr), _size(sz){}
inline Slice(const Span<T>& slice) : _area(const_cast<void*>(slice.area())), _size(slice.size()){}
inline Slice(const Slice& copy) = default;
inline Slice(Slice&& copy) : _area(copy._area), _size(copy._size){ *const_cast<size_t*>(&copy._size) = 0; }
Slice() = delete;
inline const void* area() const override { return _area; }
inline void* area() override { return _area; }
inline size_t size() const override { return _size; }
private:
void* const _area;
const size_t _size;
};
template<typename T>
using Slice = Span<T>::Slice;

@ -1,8 +1,17 @@
#include <cow.hpp> #include <cow.hpp>
#include <cstdio> #include <cstdio>
#include <cstdlib>
#include <cstring> #include <cstring>
#include <array>
int main()
{
return 0;
}
/*
template<typename T = unsigned char> template<typename T = unsigned char>
void print_slice(Slice<T> memory) void print_slice(Slice<T> memory)
{ {
@ -54,4 +63,4 @@ int main()
read_fake(clone); //clone still functions because of refcount on origin. read_fake(clone); //clone still functions because of refcount on origin.
return 0; return 0;
} }*/

Loading…
Cancel
Save